Psychology Research Assistant Opening - Washington University in Saint Louis

We have an exciting research project and are looking to hire a full-time research assistant. This is a joint project between Jonathan Peelle, Kristin Van Engen, and Mitch Sommers  at Washington University in Saint Louis. We are looking at the cognitive and neural systems involved in understanding speech, especially when it is acoustically degraded (due to background noise or hearing loss). If you got the job you would be located in the Sommers lab in the psychology department on the main campus.

Accurately measuring individual differences in cognitive abilities typically requires a lot of data; your primary responsibility would be to collect behavioral data from our research participants (on average 1-2 participants per day). This includes scheduling participants over the phone, running the study, and transferring the data and paperwork afterwards. This is a tall order, and requires someone who is naturally very organized and good with people.

By "naturally organized" we don't need someone who understands what being organized means, or who can file and alphabetize paperwork. That's true of most of the applicants for this job. We are looking for the kind of person who intuitively designs systems to organize things in life outside of work because that's how their mind works.

It also requires being able to work independently, but in the context of our team: you’ll need to be able to move ahead on projects without asking for input from others. It is highly unlikely that you will have all of the required skills already, so being able to prioritize tasks and learn skills on your own is critical.

As one example of this, you’ll be programming experiments using EPrime and/or PsychoPy. Experience with any kind of programming, especially experiment presentation, is a big plus. If you don’t have experience then a willingness and ability to learn quickly is absolutely essential.

It is also very important that you are comfortable interacting with a range of people. First, because our university research team is spread out, you'll need to be able to coordinate and communicate with all of us. Second, and more importantly, you'll need to be able to be engaging and friendly with both undergraduates and older adults who come in for our study. It is imperative that they feel valued and enjoy their experience, but that you are also able to keep them on task. If you are highly introverted you'll need to consider whether you can keep up a high level of interaction with participants for a long period of time.

On a related note, engaging our participants in scientific communication is also a big part of the job: Compensation for participating in our experiments is usually modest, but our participants are willing go out of their way to take part in our project because they are genuinely interested in the work that we do. Therefore, you will need to communicate the purpose and eventual applications of our work to participants during their visit.

Although not required, we anticipate that having some post-undergraduate experience will be really helpful in developing the skills necessary for the job. Although research experience would be great, it's more the overall level of maturity and life experience we think would be useful.

We are asking for a minimum of a 2-year commitment—there will be a significant training period, and we want to make sure you're around to benefit from the environment, and to contribute to the project. If you are considering further education we are confident that the experience (and potential publications) you gain from this time will serve you well. We have a 5-year grant and if all goes well we would love to have you stay part of the team for a long time.

A background in psychology or cognitive neuroscience—including research design, data collection, and/or programming—will be extremely useful in understanding the project and being able to contribute to the interpretation of the results.

If you're not familiar with Saint Louis, it's a great city. None of the main investigators on the grant are natives but we all like the area: the culture, food, and beer scenes are all excellent, and the overall cost of living relatively low. Wash U is a great academic institution with good benefits and a good place to work.

In summary, we are really excited about this project and want to find the right person for the job! We think the most successful candidates will be naturally organized, excited about the project, and have excellent interpersonal skills.

For informal inquiries, please send a CV to Jonathan Peelle. In your email let us know why you think you'd be a good fit, and what might set you apart from other candidates.

We are looking for the best person for the job, not the person with the "right" background or CV. If you are interested and think you'd do well we really encourage you to apply. We won't be able to interview everyone and we may not interview you, but let us be the ones to make this decision.

An official job posting will be available shortly (we hope). We won't be able to respond personally to all inquiries so please keep an eye on the Wash U human resources page and apply officially if you are interested.

Funded postdoc in speech comprehension and aging at Penn

The Grossman Lab at the University of Pennsylvania is seeking a motivated and enthusiastic Postdoctoral Research Fellow to contribute to a range of research projects investigating the neurobiology of language. Applicants should have completed a PhD in neuroscience, psychology, or an equivalent field, and have proven technical ability in image analysis and a demonstrated publication record. This position is funded in part through a collaborative grant looking at aging and speech comprehension with Jonathan Peelle (Washington University in Saint Louis) and Art Wingfield (Brandeis University). We are interested in the neurobiologic basis of the interaction of acoustic challenges (such as background noise or hearing loss) and linguistic factors (such as syntactic complexity or semantic predictability).

The University of Pennsylvania is a leading center in human brain imaging, with access to advanced MRI and PET imaging. The lab studies language and cognitive processing in healthy adults, normal aging, and neurodegenerative disease using converging evidence from multiple methods. There may also be opportunity for outstanding candidates to develop new projects and obtain competitive funding based on their own research interests, in alignment with the goals and interests of the lab. Philadelphia is an outstanding city with extraordinary cultural resources.

Primary responsibilities in this position include the analysis, interpretation, and writing up of functional and structural MRI data relating to the neural systems supporting speech processing in young and older adults. Previous experience in all of these areas is helpful, and the successful candidate will benefit from demonstrated independence in conducting analyses and interpreting results. Thus essential skills are motivation, critical thinking, and a strong record of scientific communication (papers, posters, and talks). Background knowledge in speech or aging, fMRI data analysis, experience with scripting languages (such as Matlab), and familiarity with behavioral statistical analyses (e.g., in R) are highly desirable. The anticipated start date is August 2016.

Informal inquiries can be directed to Murray Grossman (mgrossma@mail.med.upenn.edu).

 

New paper: Acoustic richness modulates networks involved in speech comprehension (Lee et al.)

Many functional imaging studies have investigated the brain networks responding to intelligible speech. Far fewer have looked at how the brain responds to speech that is acoustically degraded, but remains intelligible. This type of speech is particularly interesting, because as listeners we are frequently in the position of hearing unclear speech that we nevertheless understand—a situation even more common for people with hearing aids or cochlear implants. Does the brain care about acoustic clarity when speech is fully intelligible?

We address this question in our new paper now out in Hearing Research (Lee et al., 2016) in which we played short sentences for listeners they varied in both syntactic complexity and acoustic clarity (normal speech vs. 24 channel vocoded speech). We used an ISSS fMRI sequence (Schwarzbauer et al., 2006) to collect data, allowing us to present the sentences with reduced acoustic noise but still obtain relatively good temporal resolution (Peelle, 2014).

In response to syntactically complex sentences, listeners showed increased activity in large regions of left-lateralized frontoparietal cortex. This finding was expected given previous results from our group and others. In contrast, most of the increases in response based on acoustic clarity were due to the presence of more activity for the acoustically detailed, normal speech. Although this was somewhat unexpected as many studies show increased response for degraded speech relative to clear speech, we have some ideas as to what might explain our result:

  1. Studies finding degradation-related increases frequently also involve a loss of intelligibility;
  2. We indeed saw some areas of increased activity for the degraded speech, they were just smaller in size than the increases;
  3. We used noise vocoding to manipulate the acoustic clarity of the speech signal which reduced cues to the sex, age, emotion, and other characteristics of the speaker.

These results continue an interesting line of work (Obleser et al., 2011) looking at the role of acoustic detail apart from intelligibility. This ties in to prosody and other aspects of spoken communication that go beyond the identity of the words being spoken (McGettigan, 2015).

Overall, we think our finding that large portions of the brain show less activation when less information is available is not as surprising as it seems, and extraordinarily relevent for patients with hearing loss or using an assistive device.

Finally, I'm very happy that we've made the unthresholded statistical maps available on neurovault.org, which is a fantastic resource. Hopefully we'll see more brain imaging data deposited there (from our lab, and others!).

References:

Lee Y-S, Min NE, Wingfield A, Grossman M, Peelle JE (2016) Acoustic richness modulates the neural networks supporting intelligible speech processing. Hearing Research 333:108-117. doi: 10.1016/j.heares.2015.12.008 (PDF)

McGettigan C (2015) The social life of voices: Studying the neural bases for the expression and perception of the self and others during spoken communication. Front Hum Neurosci 9:129. doi:10.3389/fnhum.2015.00129

Obleser J, Meyer L, Friederici AD (2011) Dynamic assignment of neural resources in auditory comprehension of complex sentences. NeuroImage 56:2310-2320. doi:10.1016/j.neuroimage.2011.03.035

Peelle JE (2014) Methodological challenges and solutions in auditory functional magnetic resonance imaging. Front Neurosci 8:253. doi: 10.3389/fnins.2014.00253

Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I (2006) Interleaved silent steady state (ISSS) imaging: A new sparse imaging method applied to auditory fMRI. NeuroImage 29:774-782. doi:10.1016/j.neuroimage.2005.08.025